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Abstract The conformational mobility of a series of conjugated dienones is investigated by low-tempera 

ture NMR- and IR-spectroscopy and interpreted in terms of substituent effects. 

The stereochemical characterization of conjugated dienones, subject of various spectroscopic stu- 

dies ’ -4 , has to consider the configurations of the C=C-double bonds and the s-cis / s-trans conforma- 

tional isomerism within both the enone and diene moieties. While NMR-investigations have only dealt 

with the (average) fast-exchange spectra of the systems we have succeeded via low-temperature ‘H- and 
13 

C-measurements in slowing down dynamic interconversions and in characterizing separately the struc- 

tures of the isomers. 

y$&$- +% 
5a' 4a 1 R1=R2=H 

4 R’=CH, R*=H 

5 R’=H R2=CHs 

Knowledge of the conformational mobility is of fundamental importance for the understanding of 

3,4 conjugated dienones . Of special interest is the stereochemical behaviour of O-ionone (6_), a key con 

5 pound of scientific ond industrial problems . In addition to the dienones 1, 2, and 4 - 6 we have in- 
- - 
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Table 
13 

C-NMR-chemical shifts of 1 - 6 [upper row: major isomer, lower row: minor isomer] a) 
- - 

T[OCI 

1 -156 

2 -156 

3 -155 

4 -150 

5 -154 

6 -150 

C-l 

199.17 

197.17 

c-2 c-3 C-4 

128.67 145.14 129.57 

b) 141.20 129.57 

c-5 

140.33 

140.33 

C-la 

25.18 

30.61 

C-50 (C-50’) 

18.87 

18.87 

199.50 130.16 142.19 136.54 134.67 24.87 21.76(20.75) C-4a: 28.58 

197.19 127.94 137.44 140.67 134.67 30.70 21.76(20.75) C-4b: 19.95 

199.05 129.46 144.21 152.57 111.93 25.43 C-4a: 34.71 

196.66 b) 140.58 152.57 b) 30.01 C-4b: 27.98 

199.33 133.01 140.00 127.23 138.72 25.40 19.09 C-20: 10.83 

199.05 124.13 149.79 134.34 134.24 32.12 18.76 C-30: 12.79 

200.64 135.27 145.65 135.82 136.61 26.86 

198.35 129.88 141.32 138.37 136.61 32.54 

23.19 

23.19 
C_9a: 30.83 

28.56 

C-9 : 35.22 

4 Measured in vinylchloride, TMS as internal standard (Varian CFT 20). Signal assignments have 

been achieved from selective decoupling experiments (except for 2, where ‘H -signals overlap) and from 

non-decoupled spectra. b) Covered by solvent-signals. 

eluded in this investigation the novel compound 3_, whereby the structures of 2 and 3 seem to be appro- - - 

priate acyclic reference compounds for 6. 

1 
The enone units of dienones having hydrogens at C-2 and C-3 can be shown from H-NMR data 

to exist as equilibrium mixtures of s-cis and s-trans conformers ‘. As is readily anticipated from the 

Scheme, methyl substitution at C-2 or C-3 will shift the equilibrium toward the s-trans or s-cis side, 

respectively. Within the diene moiety, on the other hand, a 5a-substituent will favour the s-trans, whereas a 

bulky 4a-substituent will favour the s-cis isomer. Molecular-mechanics calculations indicate the relevant 
6 

activation energy to be significantly higher for rotation around the (enone) C-l-C-2 single bond . 

The carbonyl chemical shift (see Table) appears essentially unchanged throughout the series; it 

adopts a value similar to the one in the enone case and, therefore, does not reflect the extended conju- 

gation. In accord with previous experience 
1 

C-3 absorbs significantly downfieM from C-2. 

The low-temperature 
13 

C-measurements will be considered for 2 as a representative example: on 

cooling to temperatures below --90°C the signals of C-l, C-la, C-2, C-3 and C-5 broaden progressi- 

vely and split into two signals with a relative intensity of - 1 : 3. Signals of other nuclei are not affec- 

ted by the exchange process, and the slow-exchange limit is obtained at --150°C. Related signals can 

easily be identified from the temperaturedependance of the lineshape, SO that both stereoisomers are fully 

characterized by their 
13 

C-spectra. It is significant that compounds I, 3, and 6 behave analogously to 
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2. This finding is deduced from 
7 

: o) the type of nuclei whose signals show line broadening , b) the re- 

lative chemical shifts of identical nuclei within both isomers, c) the equilibrium constants, and d) the 

temperature range involved. 

Either a diene or an enone isomerization is expected to modify the mode of n-conjugation, thus 

influencing the magnetic sites of the olefinic carbons. However, the observed changes are most pro- 

nounced for signals of the enone part ond, more importantly, affect the signols of methyl substituents in 

the enone (C-la), but not in the diene (C-4a, C-4b, C-5a, C-50’) moiety. These findings, together 

with the fact that structures i, 2, 3 and 6 are analogous only in the enone unit, lead one to the con- - - 

elusion that the observed dynamic process is the interconversion of the s-cis and s-trons enone isomers. 

Further support for this interpretation is provided by the failure of 4 and 5 to exhibit any exchange - - 

broadening down to --160°C: 4 and 5 seem to exist exclusively as s-trans and s-cis enone isomers. - - 

Comparing the subspectra of both stereoisomers of 2 one notices the significant upfield shift of the 

C-la methyl signal in the mojor form; the trons enone produces some “peri-type” arrangement of the lo- 

methyl group and the hydrogen at position 3 (see Scheme). From the expected steric shielding one might 

conclude that the trans enone constitutes the favorable isomer 8. Within the ’ H-NMR spectrum of 2 at 

-156’C, one can identify the minor isomer by its well separated signal of H-2 which is 0.5 ppm down- 

field from the one of the major isomer (the signol of H-3 is influenced to a lesser extent). The interpre- 

tation of the 
13 

C- and ‘H-spectra is only compatible if H-2 is believed to resonate farther downfield in 

the (less fovorable) s-cis enone. This assignment is in accord with previous considerations of the magnetic 

onisotropy of the carbonyl group 
9 

and with the ‘H-resonances of the isomeric pentenones 7 and 8. The - - 

methyl substituents at positions 30 or 30’ strongly favour the s-trans or s-cis conformation, respectively 
10 , 

The relatively large downfield absorption of H-2 observed in the enone 7 con hardly be due to some in- 

herent substituent effect, but should rather be ascribed to the conformational change 
11 - 13 

Independent evidence for this interpretation can be derived from IR-spectroscopy since it is well 

established that in enone 
11 

and dienone 
3 

species the s-cis and s-trans conformers differ by their C=O- 

and CCC-stretching frequencies. FTIR-spectra (0.012 mm film,KBr) indicate compounds 2 and 3 to exist as - - 

equilibrium mixtures of s-cis and s-trans enone structures 12 s-trans enone: “(CO) 1655, v (CC) 1608; 2 s- 

cis enone: v(C0) 1670, v (CC) 1581; 

-1 14 

3 s-trans enone: v (CO) 1668, v (CC) 1645; zs-cis enone: v (CO) 

1675, v (CC) 1620 cm ] . Cooling the samples (25’C to -13OOC) however, causes the (C=O- and 

C=C-) bands of the s-trans enone conformers to increase in intensity and those of the s-cis form to de- 

crease. Following the arguments proposed by Nwck and Jones 
ll 

one concludes from the spectra that, at 

low temperatures, the s-trans enone constitutes the dominant stereoisomer. 

From o preliminary lineshape analysis of the 13C-NMR -spectra of 2 we obtoin the free enthalpy of 

activation as AG 
* 

(s-trans + s-cis, T=-144’C) = 6.6 kcaI/mole and the difference in the free enthalpy 

of the enone conformers as AG’(T = -144’C) = 0.27 kcal/mole. 

There is no evidence in fovour of an exchange process within the diene units. Whereas the vicinal 



H,H-coupling constant J of 1 indicates the dominance of the s-trans diene 
3 

34 - 
, such information is less 

readily available for compounds z, 3 and 6. Homonuclear NOE-measurements however, characterize the - - 

s-trans (diene) isomer to be the major component in 2, but not in 3. Thus, although dienone 2 from the 

type of substituents can be described as a true acyclic analogue of R-ionone (c), it differs from the lat- 

ter 15b d y ominantly possessing a s-trans diene moiety. 
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